A Method to Estimate the True Mahalanobis Distance from Eigenvectors of Sample Covariance Matrix
نویسندگان
چکیده
In statistical pattern recognition, the parameters of distributions are usually estimated from training sample vectors. However, estimated parameters contain estimation errors, and the errors cause bad influence on recognition performance when the sample size is not sufficient. Some methods can obtain better estimates of the eigenvalues of the true covariance matrix and can avoid bad influences caused by estimation errors of eigenvalues. However, estimation errors of eigenvectors of covariance matrix have not been considered enough. In this paper, we consider estimation errors of eigenvectors and show the errors can be regarded as estimation errors of eigenvalues. Then, we present a method to estimate the true Mahalanobis distance from eigenvectors of the sample covariance matrix. Recognition experiments show that by applying the proposed method, the true Mahalanobis distance can be estimated even if the sample size is small, and better recognition accuracy is achieved. The proposed method is useful for the practical applications of pattern recognition since the proposed method is effective without any hyper-parameters.
منابع مشابه
Character Recognition with Mahalanobis Distance Based on Between-cluster Information
In the case of using the Mahalanobis distance as discriminant function, usually the covariance matrix calculated from training samples is used. However, it is extremely difficult to prepare enough training samples if the dimension of feature vector is large. Therefore, estimated eigenvalues and eigenvectors of covariance matrix will include errors that cause misclassification. In this paper, a ...
متن کاملEIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...
متن کاملIdentifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...
متن کاملTwo Dimensional Principal Component Analysis for Online Tamil Character Recognition
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix,...
متن کاملNonlinear Shrinkage Estimation of Large-dimensional Covariance Matrices by Olivier Ledoit
Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already exists an extensive literature concerning improved estimators in such situations. In the absence of furthe...
متن کامل